skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lagutchev, Alexei_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A robust process for fabricating intrinsic single‐photon emitters in silicon nitride is recently established. These emitters show promise for quantum applications due to room‐temperature operation and monolithic integration with technologically mature silicon nitride photonics platforms. Here, the fundamental photophysical properties of these emitters are probed through measurements of optical transition wavelengths, linewidths, and photon antibunching as a function of temperature from 4.2 to 300 K. Important insight into the potential for lifetime‐limited linewidths is provided through measurements of inhomogeneous and temperature‐dependent broadening of the zero‐phonon lines. At 4.2 K, spectral diffusion is found to be the main broadening mechanism, while spectroscopy time series reveal zero‐phonon lines with instrument‐limited linewidths. 
    more » « less